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PyeMap Documentation

PyeMap is a python package aimed at automatic identification of electron and hole transfer pathways in proteins. The
analysis is based on a coarse-grained version of Beratan and Onuchic’s Pathway model, and only accounts for through-
space hopping between aromatic residues side chains [Beratan1992]. Side chains of aromatic residues and non-protein
electron transfer active moieties are modeled as vertices in a weighted graph, where the edge weights are modified
distance dependent penalty functions.

For single proteins, PyeMap identifies the shortest pathways between a specified donor to the surface, or to a specified
acceptor. For groups of proteins, PyeMap identifies shared pathways/motifs using graph mining techniques.

PyeMap serves as the backend for the web application eMap, and can also be used as a fully functional Python package.

CONTENTS: 1
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CHAPTER

ONE

CURRENT FEATURES

Single protein

• Identification of most probable electron/hole transfer pathways from a specified donor to the protein surface
or a specified electron/hole acceptor

• Accepts valid .pdb or .cif structures provided by the user or fetched from RCSB database

• Automatic detection of non-protein aromatic moieties such as porphyrins, nucleobases, and other aromatic
cofactors

• Automatic detection of 60+ inorganic clusters such as iron-sulfur clusters and others

• Automatic detection of redox-active metal ions

• User specified custom fragments

• Visualization of chemical structures and graphs

• Automatic identification of surface exposed residues using residue depth or solvent accessibility criteria

• Control over various parameters which determine connectivity of graph theory model

• Tested on structures as large as 5350 residues (51599 atoms)

Graph Mining

• Mining families of protein graphs for all patterns up to a given support threshold

• Mining families of protein graphs for specific patterns

• Classification of protein subgraphs based on similarity
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CHAPTER

TWO

IN DEVELOPMENT

• Improving the physical model of electron transfer by incorporating information on geometry-dependent elec-
tronic couplings and site sensitive energetics

• Generalization to DNA, protein-DNA complexes etc.

2.1 Installation

PyeMap officially supports Python versions 3.7 and later, and has been tested for Linux and OSX platforms.

Pip

Pip installation will only install python dependencies. This is sufficient to run PyeMap analysis, but some features will
be missing:

$ pip install pyemap

For full functionality, install the following packages:

• RDKit: visualization of chemical stuctures

• MSMS: residue depth criterion for surface exposed residues (not available on MacOS Catalina)

• DSSP: solvent accessibility criterion for surface exposed residues

• MUSCLE: Multiple sequence alignment

• Graphviz: visualization of graphs

• PyGraphviz : visualization of graphs

All of these packages can be downloaded free of charge from their respective owners, and build recipes are available
on the Anaconda cloud for some platforms.

2.2 Tutorial: Single Protein

This tutorial can help you start working with PyeMap.
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2.2.1 Basic Usage

Parsing

The first step of PyeMap analysis is parsing of a .cif or pdb file.

You can either provide PyeMap with the path to the file:

>>> import pyemap
>>> my_emap = pyemap.parse("path/to/protein.pdb")

Or fetch from the RCSB database by 4 character PDB ID:

>>> my_emap = pyemap.fetch_and_parse("1u3d")
Fetching file 1u3d from RSCB Database...
Success!
Identified 3 non-protein ET active moieties.

This generates an emap object; a dynamic data structure which manages the data at all phases of pyemap analysis.
At this stage, the emap object contains the parsed protein structure, and a list of automatically identified non-protein
electron transfer active moieties.

Process

Next, construct the graph model of the protein crystal structure using process()

>>> pyemap.process(my_emap)
>>> my_emap.init_graph_to_Image().show()

6 Chapter 2. In Development
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Surface exposed residues appear as rectangular nodes, while buried residues appear as oval nodes. Edge weights are
proportional to distances between residues. By default, all Trp, Tyr, and automatically detected non-protein electron
transfer active moieties are included.

There are various parameters one can specify to control which residues are included in the graph, and the overall
connectivity of the graph. For example, to include phenylalanine residues, and to modify the pure distance filter for
edges, do:

>>> pyemap.process(my_emap,include_residues=['Y','W','F'],distance_cutoff=15)
>>> my_emap.init_graph_to_Image().show()

2.2. Tutorial: Single Protein 7
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Find Pathways

Finally, search for possible pathways from a specified electron/hole donor to the surface using find_paths():

>>> pyemap.find_paths(my_emap,"FAD510(A)-2")
>>> my_emap.paths_graph_to_Image().show()

Alternatively, you can search for pathways from a specified donor to a particular acceptor:

>>> pyemap.find_paths(my_emap,"FAD510(A)-2", target = "W324(A)", max_paths=10)
>>> my_emap.paths_graph_to_Image().show()

2.2. Tutorial: Single Protein 9
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To get a report of the pathways found by pyemap, use report()

>>> print(my_emap.report())
Branch: W324(A)
1a: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W324(A)'] 24.15
1b: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'W377(A)', 'W324(A)'] 35.25
1c: ['FAD510(A)-2', 'W400(A)', 'W334(A)', 'W379(A)', 'W324(A)'] 36.37
1d: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W492(A)', 'W324(A)'] 49.20
1e: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'Y309(A)', 'W377(A)', 'W324(A)'] 50.67
1f: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'W377(A)', 'W492(A)', 'W324(A)'] 60.30
1g: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'W377(A)', 'W400(A)', 'W334(A)', 'W379(A)',
→˓'W324(A)'] 61.93
1h: ['FAD510(A)-2', 'W356(A)', 'Y432(A)', 'W436(A)', 'W352(A)', 'Y383(A)', 'W334(A)',

(continues on next page)
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(continued from previous page)

→˓'W379(A)', 'W324(A)'] 72.20
1i: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'Y309(A)', 'W377(A)', 'W492(A)', 'W324(A)'] 75.
→˓72
1j: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'Y309(A)', 'W377(A)', 'W400(A)', 'W334(A)',
→˓'W379(A)', 'W324(A)'] 77.35

2.2.2 Interacting with the emap object

The emap object manages all of the data at every stage of the analysis, and this data is accessible through its attributes
and functions.

Dictionaries

Much of the data on residues is stored in various dictionaries, where the key is residue name as it appears in the graph
image. For example, to directly access the Biopython Residue object corresponding to the node W324(A) do:

>>> residue_obj = my_emap.residues["W324(A)"]
>>> print(type(residue_obj))
<class 'Bio.PDB.Residue.Residue'>

The same is true of pathways, which are stored as ShortestPath objects. Any pathway(and by extension its attributes)
can be accessed by its pathway ID. For example, if you want the selection string for visualization of pathway 1a in the
NGL viewer, do:

>>> my_path = my_emap.paths["1a"]
>>> print(my_path.selection_strs)
'(510 and :A and .N1) or (510 and :A and .C2) or (510 and :A and .O2) or (510 and :A and␣
→˓.N3) or
(510 and :A and .C4) or (510 and :A and .O4) or (510 and :A and .C4X) or (510 and :A and␣
→˓.N5) or
(510 and :A and .C5X) or (510 and :A and .C6) or (510 and :A and .C7) or (510 and :A and␣
→˓.C8) or
(510 and :A and .C9) or (510 and :A and .C9A) or (510 and :A and .N10) or (510 and :A␣
→˓and .C10)',
'(400 and :A and .CG) or (400 and :A and .CD1) or (400 and :A and .CD2) or (400 and :A␣
→˓and .NE1) or
(400 and :A and .CE2) or (400 and :A and .CE3) or (400 and :A and .CZ2) or (400 and :A␣
→˓and .CZ3) or
(400 and :A and .CH2)', '(377 and :A and .CG) or (377 and :A and .CD1) or (377 and :A␣
→˓and .CD2) or
(377 and :A and .NE1) or (377 and :A and .CE2) or (377 and :A and .CE3) or (377 and :A␣
→˓and .CZ2) or
(377 and :A and .CZ3) or (377 and :A and .CH2)', '(324 and :A and .CG) or (324 and :A␣
→˓and .CD1) or
(324 and :A and .CD2) or (324 and :A and .NE1) or (324 and :A and .CE2) or (324 and :A␣
→˓and .CE3) or
(324 and :A and .CZ2) or (324 and :A and .CZ3) or (324 and :A and .CH2)'

2.2. Tutorial: Single Protein 11
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Graphs

The graphs are stored in the emap object as NetworkX Graph objects. The attributes of edges and vertices can be
accessed from these graphs in usual NetworkX fashion (see their documentation for more information). For example,
to access the weight of the edge connecting vertices FAD510(A)-2 and W400(A), do:

>>> weight = my_emap.init_graph["FAD510(A)-2"]["W400(A)"]['weight']
>>> print(weight)
8.793106029091886

If what you need instead is the actual distance, this information is also kept:

>>> dist = my_emap.init_graph["FAD510(A)-2"]["W400(A)"]['distance']
>>> print(dist)
8.802989071175238

2.2.3 Visualization

Residues

Graph images and chemical structures of non-protein electron transfer active moieties can be exported to PIL with
the residue_to_Image(), init_graph_to_Image(), paths_graph_to_Image() functions. To save to file, use
paths_graph_to_file(), init_graph_to_file(), and residue_to_file().

>>> my_emap.residue_to_Image("FAD510(A)-2").show()

NGLView

Pathways can be visualized in the crystal structure using the NGLView Jupyter Widget. Pass the pathway ID of interest
along with a nglview.widget.NGLWidget object to the visualize_pathway_in_nglview() function.

>>> import nglview as nv
>>> view = nv.show_file(my_emap.file_path)
>>> view.clear_representations()
>>> view.add_cartoon(color="lightgray")
>>> my_emap.visualize_pathway_in_nglview("1a",view)
>>> view

12 Chapter 2. In Development
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2.3 Tutorial: Protein Graph Mining

This tutorial can help you start working with the pyemap.graph_mining module of PyeMap.

2.3.1 Parsing

The first step of graph mining with PyeMap is to create a PDBGroup object, and populate it with emap objects for the
PDBs of interest. Here, we’ll fetch and parse a small set of flavoprotein PDBs.

import pyemap
from pyemap.graph_mining import PDBGroup
pdb_ids = ['1X0P', '1DNP', '1EFP', '1G28', '1IQR', '1IQU',
'1NP7', '1O96', '1O97', '1QNF', '1U3C', '1U3D', '2IYG', '2J4D',
'2WB2', '2Z6C', '3FY4', '3ZXS', '4EER', '4GU5', '4I6G', '4U63',
'6FN2', '6KII', '6LZ3', '6PU0', '6RKF']
pg = PDBGroup('My Group')
for pdb in pdb_ids:

pg.add_emap(pyemap.fetch_and_parse(pdb))

2.3.2 Generating Protein Graphs

The next step is to generate the graphs for each PDB. One can specify the chains, ET active moieties, residues, and any
other kwargs from process(). If no arguments are specified, the first chain from each PDB will be chosen, and all
ET active moieties on those chains will be included. See process_emaps() for more details.

pg.process_emaps()

2.3.3 Generate graph database

The next step is to classify the nodes and edges. One can define “substitutions” for nodes, and thresholds for edges.
See generate_graph_database() for more details.

# W and Y would be interchangeable and given the label 'X'
substitutions = ['W','Y']
# edges with weights > 12 are distinguished from those with weights < 12
edge_thresholds = [12]
pg.generate_graph_database(sub=[],edge_thresh=edge_thresholds)

2.3.4 Mine for subgraphs

There are two types of searches available in PyeMap.

1. mine for all possible subgraphs:

pg.run_gspan(19)

2. search for a specific pattern:

pg.find_subgraph('WWW#')

2.3. Tutorial: Protein Graph Mining 13
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2.3.5 Analysis: Subgraph patterns

The identified subgraphs are stored in the subgraph_patterns dictionary.

>>> pg.subgraph_patterns
{'1_WWW#_18': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x10d652430>,
'2_WWW#_14': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x183c3a1f0>,
'3_WWW#_4': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x183c3aca0>,
'4_WWW#_2': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x183c2de50>,
'5_WWW#_2': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x183c24a30>,
'6_WWW#_2': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x183c24730>,
'7_WWW#_1': <pyemap.graph_mining.frequent_subgraph.SubgraphPattern at 0x12c680f10>}

The subgraph pattern can be visualized using pyemap.graph_mining.SubgraphPattern.subgraph_to_Image()
or pyemap.graph_mining.SubgraphPattern.subgraph_to_file().

sg = pg.subgraph_patterns['1_WWW#_18']
sg.subgraph_to_Image()

2.3.6 Analysis: Protein subgraphs

To identify the specific residues in each PDB involved in the identified patterns, one should first call pyemap.
graph_mining.SubgraphPattern.find_protein_subgraphs(). The identified protein subgraphs are stored
in the protein_subgraphs dictionary. Each protein subgraph has a unique ID.

sg.find_protein_subgraphs()
sg.protein_subgraphs
{'4U63_1': <networkx.classes.graph.Graph at 0x183d58fa0>,
'4U63_2': <networkx.classes.graph.Graph at 0x183b66be0>,
'4U63_3': <networkx.classes.graph.Graph at 0x183cf7040>,
'4U63_4': <networkx.classes.graph.Graph at 0x183d53eb0>,
'4U63_5': <networkx.classes.graph.Graph at 0x183d51220> ...

To visualize a protein subgraph, use pyemap.graph_mining.SubgraphPattern.subgraph_to_Image() or
pyemap.graph_mining.SubgraphPattern.subgraph_to_file() and pass the ID as a keyword argument.

sg.subgraph_to_Image('1U3D_51')

2.3.7 Clustering

Protein subgraphs are clustered into groups based on sequence or structural similarity. By default, structural clustering
is used. To switch to sequence clustering, call pyemap.graph_mining.SubgraphPattern.set_clustering().

print(sg.groups)
{1: ['4U63_33', '1DNP_34', '2J4D_40', '1IQR_43', '1IQU_47'], ...
44: ['3ZXS_60'] ... }

14 Chapter 2. In Development
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2.3.8 Visualize in NGLView

Protein subgraphs can be visualized in the crystal structure using the NGLView Jupyter Widget. Pass the pathway ID of
interest along with a nglview.widget.NGLWidget object to the visualize_subgraph_in_nglview() function.

import nglview as nv
view = nv.show_file(sg.support['1U3D'].file_path)
view.clear_representations()
view.add_cartoon(color="lightgray")
sg.visualize_subgraph_in_nglview('1U3D_50',view)
view

2.4 Developer Reference

2.4.1 Single Protein

Usage

Parse File

Introduction

PDB files can be either uploaded, or fetched from the RCSB database. At this stage, non-protein electron transfer active
moieties are automatically identified by pyemap, and saved to an emap object which is returned to the user.

2.4. Developer Reference 15
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Parser

pyemap.parse(filename, quiet=True)
Parses pdb file and returns emap object.

Parameters

• filename (str) – Full path to file which needs to be parsed

• quiet (bool, optional) – Supresses output when set to true

Returns
my_emap – emap object reading for parsing

Return type
emap

pyemap.fetch_and_parse(pdb_id, dest='', quiet=False)
Fetches pdb from database and parses the file.

Parameters

• pdb_id (str) – RCSB PDB ID

• dest (str, optional) – Full path to where file should be saved

• quiet (bool, optional) – Supresses output when set to true

Returns
emap – emap object ready for processing.

Return type
emap

Process File

Once you have an emap object generated by a successful parse, you can construct the graph model of your protein
crystal structure. The way this graph is constructed is extremely flexible and customizable. Each edge connecting two
vertices is assigned a weight:

𝑃 ′ = −𝑙𝑜𝑔10(𝜖)

where 𝜖 is a distance-dependent hopping penalty function:

𝜖 = 𝛼 exp(−𝛽(𝑅−𝑅𝑜𝑓𝑓𝑠𝑒𝑡))

You can specify custom fragments atom by atom using the “custom” optional argument, which takes a string formatted
in pyemap’s custom fragment selection syntax, which is based on PDB atom serial number. The syntax is summarized
below:

Syntax
“,” defines discrete range of atoms
“-” defines continuous range of atoms
“()” encloses atom range
“(. . . ),(. . . )” defines multiple custom fragments

16 Chapter 2. In Development
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Process

pyemap.process(emap, chains=None, eta_moieties=None, dist_def='COM', sdef='RSA', edge_prune='PERCENT',
include_residues=['Y', 'W'], custom='', distance_cutoff=20, max_degree=4, percent_edges=1.0,
num_st_dev_edges=1.0, rd_thresh=3.03, rsa_thresh=0.2, coef_alpha=1.0, exp_beta=2.3,
r_offset=0.0)

Constructs emap graph theory model based on user specs, and saves it to the emap object.

Parameters

• emap (emap) – Object for storing state of emap analysis.

• chains (list of str) – List of strings corresponding to chains included in analysis

• eta_moieties (list of str) – List of strings corresponding to residue names of eta moi-
eties

• dist_def (str, optional) – Definition of distance matrix. ‘COM’ for center of mass,
‘CATM’ for closest atom

• sdef (str, optional) – Algorithm to use for surface exposure. ‘RD’ for residue depth,
‘RSA’ for relative solvent accessibility

• edge_prune (str, optional) – Algorithm for pruning edges. ‘DEGREE’ for degree,
‘PERCENT’ for percent

• include_residues (list of str) – Included amino acids specified by 1 letter code

• custom (str, optional) – Custom atom string specified by user

• distance_cutoff (float) – Defines a pure distance threshold. PyeMap will only keep
edges with distances less than or equal distance_cutoff.

• max_degree (int, optional) – Maximum degree of any vertex. Only used when
edge_prune is set to ‘DEGREE’.

• percent_edges (float, optional) – Percent of edges to keep for each node. Only used
when edge_prune is set to ‘PERCENT’.

• num_st_dev_edges (float, optional) – Number of standard deviations of edges to
keep. Only used when edge_prune is set to ‘PERCENT’.

• rd_thresh (float, optional) – Threshold for buried/surface exposed for residue depth

• rsa_thresh (float, optional) – Threshold for buried/surface exposed for relative sol-
vent accessbility

• coef_alpha (float, optional) – Penalty function parameters.

• exp_beta (float, optional) – Penalty function parameters.

• r_offset (float, optional) – Penalty function parameters.

Raises
RuntimeError: – Not enough residues to construct a graph

2.4. Developer Reference 17
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Example

>>> import pyemap
>>> my_emap = pyemap.fetch_and_parse("1u3d")
>>> pyemap.process(my_emap,eta_moieties=["ANP511(A)"],custom="(3960-3969),(3970-3980,
→˓3982,3984-3987)")
>>> my_emap.init_graph_to_Image().show()
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Find Shortest Pathways

Introduction

Once you have a processed emap object which contains the graph theory model of the protein structure, you can search
for pathways. There are two modes of search: source only and specified target. Pathways are stored as ShortestPath
objects, which are organized into Branch objects. The data is stored in the emap object which was passed in. For a
report of pathways found by pyemap, use report().

Source only

When only a source node is selected, a NetworkX implementation of Dijkstra’s algorithm is used to calculate the shortest
path from the source to each surface-exposed residue. In the output, the pathways are organized into “branches” based
on the first surface-exposed residue reached during the course of the pathway. The source node will be colored yellow
in the graph visualization.

Specified target

If a target is specified, a NetworkX procedure based on Yen’s algorithm is used to calculate the shortest paths from
source to target. The target does not need to be a surface-exposed residue. The target node will be colored blue in the
graph visualization.

Examples

Source only:

>>> import pyemap
>>> my_emap = pyemap.fetch_and_parse("1u3d")
>>> pyemap.process(my_emap)
>>> pyemap.find_paths(my_emap,"FAD510(A)-2")
>>> print(my_emap.report())
Branch: W356(A)
1a: ['FAD510(A)-2', 'W356(A)'] 9.48
1b: ['FAD510(A)-2', 'W356(A)', 'Y432(A)', 'W436(A)'] 26.44
1c: ['FAD510(A)-2', 'W356(A)', 'W213(A)', 'W62(A)', 'W217(A)'] 34.72
Branch: ANP511(A)
2a: ['FAD510(A)-2', 'FAD510(A)-1', 'ANP511(A)'] 14.15
...

>>> my_emap.paths_graph_to_Image().show()

2.4. Developer Reference 19
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Specified Target:

>>> pyemap.find_paths(my_emap,"FAD510(A)-2", target = "W324(A)", max_paths=10)
>>> my_emap.report()
Branch: W324(A)
1a: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W324(A)'] 24.15
1b: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'W377(A)', 'W324(A)'] 35.25
1c: ['FAD510(A)-2', 'W400(A)', 'W334(A)', 'W379(A)', 'W324(A)'] 36.37
1d: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W492(A)', 'W324(A)'] 49.20
1e: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'Y309(A)', 'W377(A)', 'W324(A)'] 50.67
...

20 Chapter 2. In Development
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>>> my_emap.paths_graph_to_Image().show()

Find Paths

pyemap.pathway_analysis.find_paths(emap, source, target=None, max_paths=10)
Function which calculates pathways from source to target or surface exposed residues.

Performs shortest path analysis on source and (optionally) target residues.

Parameters

• emap (emap) – Object for storing state of emap analysis.

2.4. Developer Reference 21



PyeMap Documentation

• source (str) – source node for analysis

• target (str, optional) – target node for analysis

• max_paths (int, optional) – maximum number of paths to search for in yen’s algorithm

Data Structures

emap

class pyemap.emap(file_path, pdb_id, eta_moieties, chain_list, sequences)
Manages the data generated at all stages of PyeMap analysis.

file_path

Crystal structure file being analyzed by PyeMap.

Type
str

eta_moieties

Non-protein eta moieties automatically identified at the parsing step.

Type
dict of str: Bio.PDB.Residue.Residue

chain_list

List of chains identified at the parsing step.

Type
list of str

sequences

Amino acid sequence for each chain in FASTA format

Type
dict of str, str

residues

Residues included in the graph after the process step.

Type
dict of str: Bio.PDB.Residue.Residue

user_residues

Custom residues specified by the user.

Type
dict of str: Bio.PDB.Residue.Residue

init_graph

Graph generated after the process step.

Type
networkx.Graph

branches

Branches found by PyeMap analysis

Type
dict of int: Branch

22 Chapter 2. In Development
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paths

Paths found by PyeMap sorted by lowest to highest score.

Type
dict of str: ShortestPath

paths_graph

Graph generated after the shortest paths step.

Type
networkx.Graph

__init__(file_path, pdb_id, eta_moieties, chain_list, sequences)
Initializes emap object.

Parameters

• file_path (str) – Name of file

• eta_moieties (list of Bio.PDB.Residue.Residue) – Customized residue objects gen-
erated for automatically detected eta moieties

• chain_list (list of str) – Chains identified by the parser

• sequences (dict of str:str) – Key is chain id, value is sequence in fasta format

get_surface_exposed_residues()

Returns list of surface exposed residues.

Returns
surface_exposed – List of surface exposed residues identified by pyemap

Return type
list of str

init_graph_to_Image()

Returns PIL image of initial graph

Returns
img

Return type
PIL.Image.Image

init_graph_to_file(dest='')
Saves image of graph generated by process step to file.

Parameters
dest (str) – Destination for writing to file.

paths_graph_to_Image()

Returns PIL image of pathways graph

Returns
img

Return type
PIL.Image.Image

paths_graph_to_file(dest='')
Saves image of graph generated by pathways step to file.
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Parameters
dest (str) – Destination for writing to file.

report(dest='')
Returns report of most probable pathways. Writes to file if destination is specified.

Parameters
dest (str, optional) – Destination for writing to file

Returns
output – Formatted report of pathways found

Return type
str

Raises
RuntimeError – Nothing to report

residue_to_Image(resname, scale=1.0)
Returns PIL image of chemical structure. :param resname: Name of residue :type resname: str :param
scale: Output scaling factor, default dimensions are (100,100) :type scale: float, optional

Returns
img

Return type
PIL.Image.Image

residue_to_file(resname, dest='', size=(100, 100))
Saves image of residue to file in .svg format.

Parameters

• resname (str) – Name of residue (node label) to be saved to file.

• dest (str, optional) – destination to save the image

• size ((float,float), optional) – dimensions of image saved to file

visualize_pathway_in_nglview(ptid, view)
Visualize pathway in nglview widget

Parameters

• ptid (str) – Pathway ID to be visualized

• view (nglview.widget.NGLWidget) – NGL Viewer widget

Branch

Branches are stored in the branches dictionary of the emap object. The keys are the branch numbers.

>>> print(my_emap.branches[1])
>>> Branch: W356(A)
>>> 1a: ['FAD510(A)-2', 'W356(A)'] 9.48

>>> 1b: ['FAD510(A)-2', 'W356(A)', 'W213(A)'] 15.31
>>> 1c: ['FAD510(A)-2', 'W356(A)', 'W213(A)', 'W61(A)'] 23.95
>>> 1d: ['FAD510(A)-2', 'W356(A)', 'Y432(A)', 'W436(A)'] 26.44
>>> 1e: ['FAD510(A)-2', 'W356(A)', 'W213(A)', 'W62(A)', 'W217(A)'] 34.72
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class pyemap.Branch(branch_id, target)
Data structure used to group shortest paths with a common first surface exposed residue.

Shortest paths are classified into branches based on the first surface exposed residue reached during the course
of the pathway. For example, given a source node A, and surface exposed nodes B and C, the paths [A,F,B] and
[A,F,B,C] will both be part of the “B” branch. The path [A,E,C] would be part of its own ‘C” branch.

branch_id

Unique identifier for a branch

Type
str

target

Target node which a branch corresponds to

Type
str

paths

List of ShortestPath objects that make up a branch

Type
list of ShortestPath

__str__()

String representation of Branch. First line is: “Branch: branch_id” and subsequent lines are the string
representations of each ShortestPath object comprising the Branch.

add_path(path)
Adds a path to the branch and sets the path_id.

Each time a path is added, the paths in the branch are sorted. After sorting, each path is assigned a path
id composed of the branch id and its location in the paths list. For example, the shortest path in branch 12
would be assigned the id ‘12a’, the second shortest ‘12b’ and so on.

Parameters
path (ShortestPath ) – A ShortestPath from source to a surface exposed residue

ShortestPath

ShortestPaths are stored in the paths dictionary of the emap object. The keys are the path IDs.

>>> print(my_emap.paths['1a'])
>>> 1a: ['FAD510(A)-2', 'W356(A)'] 9.48

class pyemap.ShortestPath(path, edges, length)
Data structure used to store shortest paths.

Contains functions for comparison and string representation, both for the user output and in NGL viewer selection
language for the purpose of visualization. Sorting for ShortestPath objects is done based on the length attribute.

path

List of residue names that make up the shortest path

Type
list of str
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edges

List of edge weights that make up the shortest path

Type
list of float

path_id

List of residues that make up the shortest path

Type
list of str

length

Total distance from source to target

Type
float

selection_strs

NGL selection strings for visualization

Type
list of str

color_list

Colors of residues in visualization

Type
list of str

labeled_atoms

Atom names which are labeled in NGL visualization

Type
list of str

label_texts

Labels of residues in NGL visualization

Type
list of str

set_id(path_id)
Setter for path_id

set_visualization(selection_strs, color_list, labeled_atoms, label_texts)
Saves information needed for NGL visualization.

Algorithms

Non-protein electron transfer active moieties

Introduction

Frequently, protein crystal structures contain residues which are not amino acids, and do not belong to the polypeptide
chain(s). Many of these residues can play significant roles in electron/hole transfer. PyeMap automatically identifies
non-protein electron/hole transfer (ET) active moieties, and gives users the option to include them in the analysis. In
the current implementation, non-protein ET active moieties identified by PyeMap are non-amino acid aromatic sites,
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extended conjugated systems, and a pre-defined list of metal clusters and redox active metal ions. For a given non-
standard co-factor (e.g., flavin adenine dinucleotide), there can be multiple non-protein ET active moieties identified
by PyeMap, and they will appear as separate nodes on the graph if selected for analysis.

Identification

Aromatic moieties and extended conjugated chains

After initial parsing, non-protein residues are analyzed for detection of ET active moieties. For each non-standard
residue, a chemical graph is constructed using the NetworkX library, consisting of the O, C, N, P and S atoms in the
residue. To isolate the conjugated systems, an edge is only drawn between two atoms j and k if:

𝑟jk ≤ 𝑥− 2𝜎𝑥

where x is the mean single-bond distance between those two elements, and 𝜎�̄� is the standard deviation. If there are any
conjugated systems, the resulting chemical graph will be a forest of connected component subgraphs. Each subgraph
that contains a cycle, or consists of 10 or more atoms will be considered a non-protein ET active moiety, and can be
selected for the analysis.

As one would expect, the structures generated by this procedure are not always correct, often due to poor resolution in
PDBs. We have two functions which try to correct the chemical graph in order to generate proper structures. The first is
cleanup_bonding(), which connects atoms that are within experimental single bond lengths and are only connected
to 1 or 2 neighbors. This function often fixes broken aromaticity. The second is remove_side_chains(), which
recursively removes non-aromatic side chains from aromatic moieties.

The final chemical graph is used to construct a SMILES string using the pysmiles package, which can be visualized
using standard cheminformatics tools such as RDKIT.

Clusters

The PyeMap repository contains a list of 66 inorganic clusters which are automatically identified by their 3 character
residue names. All atoms in the residue are collected as part of the customized residue object, and a pre-rendered image
is used for visualization of chemical structure. Otherwise, they can be used and interacted with just like any other
residue. The list of clusters and pre-rendered images were obtained from the Protein Data Bank in Europe (PDBe).

Redox-active Metal ions

PyeMap automatically identifies a set of redox-active metal ions to include as residues in the graph.

Table 2.1: Available metal ions
Element Charges
Cu +1, +2, +3
Fe +2, +3
Mn +2, +3
Co +2, +3
Mo 0, +4, +6
Ni +2
Cr +3
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Visualization

Chemical structures of residues(not including user-specified residues) can be visualized using the
residue_to_Image(), init_graph_to_Image() functions. SMILES strings and NGL Viewer selection
strings are also accessible through the emap object. Note that SMILES strings are not available for clusters and
user-specified residues.

Source

pyemap.custom_residues.
find_conjugated_systems(...)

Finds conjugated systems within a BioPython residue
object, and returns them as individual customized
BioPython Residue objects.

pyemap.custom_residues.
process_custom_residues(...)

Identifies and returns customized Bio.PDB.Residue ob-
jects corresponding to electron transfer active moieties.

pyemap.structures.cleanup_bonding(res_graph) Connects nodes that should be connected to fix broken
aromaticity.

pyemap.structures.
remove_side_chains(res_graph)

Removes non-aromatic sides chains on aromatic eta moi-
eties.

pyemap.custom_residues.find_conjugated_systems

pyemap.custom_residues.find_conjugated_systems(atoms, res_names)
Finds conjugated systems within a BioPython residue object, and returns them as individual customized BioPy-
thon Residue objects.

Parameters

• atoms (array-like) – List of atoms in the residue

• res_names (arary-like) – List of already used names for custom residues

Returns
custom_res_list – List of customized Bio.PDB.Residue.Residue

Return type
array-like

pyemap.custom_residues.process_custom_residues

pyemap.custom_residues.process_custom_residues(non_standard_residue_list)
Identifies and returns customized Bio.PDB.Residue objects corresponding to electron transfer active moieties.

Parameters
non_standard_residue_list (list of Bio.PDB.Residue.Residue) – List of non-protein
residues in the structure

Returns
custom_res – List of customized BioPython residue objects corresponding to electron transfer
active moieties that are not part of standard protein residues

Return type
list of Bio.PDB.Residue.Residue
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pyemap.structures.cleanup_bonding

pyemap.structures.cleanup_bonding(res_graph)
Connects nodes that should be connected to fix broken aromaticity.

Parameters
res_graph (networkx.Graph) – residue graph

pyemap.structures.remove_side_chains

pyemap.structures.remove_side_chains(res_graph)
Removes non-aromatic sides chains on aromatic eta moieties.

Parameters
res_graph (networkx.Graph) – residue graph

Graph construction

Introduction

The first step to constructing the graph theory model is constructing a pairwise distance matrix for the selected amino
acid residues. The distance is calculated either between centers of mass of the side chains, or between their closest
atoms. For standard protein residues, only side chain atoms are considered in the calculation. All atoms of automat-
ically identified non-protein ET active moieties and user-specified custom fragments are considered in the distance
calculations. From the distance matrix, an undirected weighted graph is constructed using NetworkX, initially with the
calculated distances as weights.

Penalty Functions

The next step is to recast the weights as modified distance dependent penalty functions:

𝑃 ′ = −𝑙𝑜𝑔10(𝜖)

where:

𝜖 = 𝛼 exp(−𝛽(𝑅−𝑅𝑜𝑓𝑓𝑠𝑒𝑡))

, , and 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 are hopping parameters, similar to the through-space tunneling penalty function in the Pathways model
[Beratan1992]. All subsequent calculations are performed using the modified penalty functions as edge weights. When
using default hopping parameters ( = 1.0, = 2.3, Roffset = 0.0), the edge weights will be equal to the distances (multiplied
by a prefactor of 2.3 * 𝑙𝑜𝑔10(𝑒) 1).

Edge Pruning

One of two algorithms is used to prune the edges of the graph, which is specified by the edge_prune keyword argument
to process().

Percent-based algorithm (default)

This algorithm considers only the smallest percent_edges % of edges by weight per node, and then prunes based on
the mean and standard deviation of the weights of the remaining edges.
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percent_edges, num_st_dev_edges, and distance_cutoff are specified as keyword arguments to process().

Specify edge_prune='PERCENT' to use this algorithm.

Degree-based algorithm

This algorithm greedily prunes the largest edges by weight of the graph until each node has at most max_degree
neighbors.

30 Chapter 2. In Development



PyeMap Documentation

max_degree and attr:distance_cutoff : are specified as keywords arguments to process().

Specify edge_prune='DEGREE' to use this algorithm. This algorithm is recommended when doing Protein Graph
Mining.

Visualization and further analysis

The graph can be interacted with and written to file using the emap object. The graph is visualized using PyGraphviz
and Graphviz. The graph is stored as a networkx.Graph object in the init_graph and paths_graph attributes of
the emap object.

>>> G = my_emap.init_graph
>>> print(G.edges[('W17(A)', 'W45(A)')]['distance'])
>>> 12.783579099370808
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Source

pyemap.process_data.filter_by_degree(G, ...)

pyemap.process_data.filter_by_percent(G, ...)

pyemap.process_data.create_graph (dmatrix, ...) Constructs the graph from the distance matrix and node
labels.

pyemap.process_data.pathways_model(dist, ...) Applies penalty function parameters and returns score.

pyemap.process_data.filter_by_degree

pyemap.process_data.filter_by_degree(G, max_degree, distance_cutoff, coef_alpha, exp_beta, r_offset)

pyemap.process_data.filter_by_percent

pyemap.process_data.filter_by_percent(G, percent_edges, num_st_dev_edges, distance_cutoff, coef_alpha,
exp_beta, r_offset)

pyemap.process_data.create_graph

pyemap.process_data.create_graph(dmatrix, node_labels, edge_prune, coef_alpha, exp_beta, r_offset,
distance_cutoff, percent_edges, num_st_dev_edges, max_degree,
eta_moieties)

Constructs the graph from the distance matrix and node labels.

Parameters

• dmatrix (numpy.array of float) – Distance matrix of aromatic residues.

• node_label (list of str) – Labels for residues in the graph.

• edge_prune (int) – 0 for degree, 1 for percent

• residue_numbers – res numbers

• distance_cutoff (float) – Parameters that determine which edges are kept.

• max_degree (float) – Parameters that determine which edges are kept.

• eta_moieties (list of str) – Non standard residues that were automatically identified

Returns
G – Graph of aromatic residues in protein

Return type
networkx.Graph
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References

Gray, H. B.; Winkler, J. R. Long-Range Electron Transfer. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (10),
3534 LP-3539. Reference for 20A filter on edges

pyemap.process_data.pathways_model

pyemap.process_data.pathways_model(dist, coef_alpha, exp_beta, r_offset)
Applies penalty function parameters and returns score.

𝜖 = 𝛼 exp(−𝛽(𝑅−𝑅𝑜𝑓𝑓𝑠𝑒𝑡))

Parameters

• dist (float) – Actual distance in angstroms

• coef_alpha (float) – Penalty function parameters

• exp_beta (float) – Penalty function parameters

• r_offset (float) – Penalty function parameters

Returns
mod_penalty

Return type
float

Surface exposed residues

Introduction

Electron (or hole) transfer often proceeds from/to surface residues to/from an acceptor/donor inside the protein. There-
fore, identification of surface-exposed residues is a key step for prediction of relevant electron/hole transfer pathways.
Users can select one of two parameters to classify residues as buried/exposed: residue depth and relative solvent ac-
cessibility. In the graph images, buried residues will appear as ovals, while exposed residues will appear as rectangles.

Residue depth

Residue depth is a measure of solvent exposure that describes the extent to which a residue is buried within the protein
structure. The parameter was first introduced by Chakravarty [Chakravarty1999] and coworkers, and is computed in
PyeMap using the freely available program MSMS. MSMS computes a solvent-excluded surface by rolling a probe
sphere along the surface of the protein, which is represented as atomic spheres. The boundary of the volume reach-
able by the probe is taken to be the solvent-excluded surface. The residue depth for each residue is calculated as the
average distance of its respective atoms from the solvent-excluded surface [Sanner1996]. In PyeMap, the threshold for
classifying residues as buried/exposed is:

RD ≤ 3.03

which is the threshold proposed by Tan and coworkers [Tan2009]. Residues 3.03 Å and shallower will be classified as
exposed in the final graph; those deeper will be classified as buried. This threshold can be customized by passing the
the rd_thresh keyword argument to process().

Please note that MSMS is not available on Mac OS > 10.15, as newer Mac OS do not support 32-bit applications.
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Relative Solvent Accessibility

Accessible surface area is a measure of solvent exposure, first introduced by Lee and Richards, which describes the
surface area of a biomolecule that is accessible to solvent molecules [Lee1971]. To calculate the accessible surface of
each atom, a water sphere is rolled along the surface of the protein, making the maximum permitted van der Waals
contacts without penetrating neighboring atoms [Shrake1973]. The total accessible surface area for a residue is the
sum of the solvent accessible surface areas of its respective atoms. In order to develop a threshold to classify residues
as buried or exposed, calculated ASA values need to be normalized based on corresponding reference values for a
given residue. This requires precomputed or predefined maximal accessible surface area (MaxASA) for all residues.
MaxASA is the maximal possible solvent accessible surface area for a given residue. MaxASA values are obtained
from theoretical calculations of Gly-X-Gly tripeptides in water, where X is the residue of interest. From ASA and
MaxASA, the relative solvent accessibility (RSA) can be calculated by the formula:

𝑅𝑆𝐴 =
𝐴𝑆𝐴

𝑀𝑎𝑥𝐴𝑆𝐴

Several scales for MaxASA have been published. PyeMap uses the most recent theoretical scale from Tien and cowork-
ers [Tien2013]. Relative solvent accessibility is calculated using the DSSP program developed by Kabsch and Sander
[Sander1983]. In PyeMap, the RSA threshold chosen for exposed residues is:

RSA ≥ 0.05

as recommended by Tien and coworkers. Residues with RSA greater than equal to 0.05 will be classified as ex-
posed, those with lower RSA values will be classified as buried. This threshold can be customized by passing the
the rsa_thresh keyword argument to process().

Source

pyemap.process_data.
calculate_residue_depth (...)

Returns a list of surface exposed residues as determined
by residue depth.

pyemap.process_data.calculate_rsa(filename,
...)

Returns a list of surface exposed residues as determined
by relative solvent accessibility.

pyemap.process_data.calculate_residue_depth

pyemap.process_data.calculate_residue_depth(model, aromatic_residues, rd_cutoff )
Returns a list of surface exposed residues as determined by residue depth.

Parameters

• filename (str) – Name of pdb file to be analyzed

• aromatic_residues (list of Bio.PDB.Residue.Residue) – residues included in the anal-
ysis

• rd_cutoff (float) – Cutoff for buried/surface exposed

Returns
surface_exposed_res – List of residue names corresponding to the surface exposed residues

Return type
list of str
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pyemap.process_data.calculate_rsa

pyemap.process_data.calculate_rsa(filename, model, node_list, rsa_cutoff )
Returns a list of surface exposed residues as determined by relative solvent accessibility.

Only standard protein residues are currently supported. Non-protein and user specified custom residues cannot
be classified as surface exposed using this criteria.

Parameters

• filename (str) – Name of pdb file to be analyzed

• model (Bio.PDB.Model.Model) – Model under analysis

• node_list (list of str) – List containing which standard residues are included in anal-
ysis

• rsa_cutoff (float) – Cutoff for buried/surface exposed

References

Tien, M. Z.; Meyer, A. G.; Sydykova, D. K.; Spielman, S. J.; Wilke, C. O. PLoS ONE 2013, 8 (11).
Reference for relative solvent accessibility cutoff of 0.05, and for MaxASA values

Shortest paths

Introduction

Once you have a processed emap object, you can search for electron/hole transfer pathways. There are two modes:
source only, or specified target.

Source only

When only a source is specified, Dijkstra’s algorithm is used to find the shortest path between the specified source and
every surface-exposed residue in the graph. The pathways are classified into branches based on the first surface-exposed
residue reached along the pathway. Within a branch, the pathways are ranked according to their score.

For an example of how the branches are structured, refer to the example below. In this example, the flavin group
on FAD (FAD510(A)-2) is specified as the source, and W356(A), W436(A), and ANP511(A) have been identified
as surface-exposed residues. For W436(A), the shortest path involves first going through W356(A), which itself is a
surface-exposed residue. Thus this path is assigned to branch W356(A), and given the ID 1b, as it is the second shortest
path in this branch. The shortest path to ANP511(A) is given the ID 2a, and belongs to a different branch.

Example 1: Source only

>>> import pyemap
>>> my_emap = pyemap.fetch_and_parse("1u3d")
>>> pyemap.process(my_emap)
>>> pyemap.find_paths(my_emap,"FAD510(A)-2")
>>> print(my_emap.report())
Branch: W356(A)
1a: ['FAD510(A)-2', 'W356(A)'] 9.48
1b: ['FAD510(A)-2', 'W356(A)', 'Y432(A)', 'W436(A)'] 26.44
1c: ['FAD510(A)-2', 'W356(A)', 'W213(A)', 'W62(A)', 'W217(A)'] 34.72

(continues on next page)
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(continued from previous page)

Branch: ANP511(A)
2a: ['FAD510(A)-2', 'FAD510(A)-1', 'ANP511(A)'] 14.15
...

>>> my_emap.paths_graph_to_Image().show()
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Specified target

When a source and a target are specified, a NetworkX procedure based on Yen’s algorithm is used to find the 5 shortest
paths from source to target. Yen’s algorithm exploits the idea that shortest paths are likely to share common steps, and
is able to compute the k shortest paths between nodes in a graph with non-negative weights. The procedure first finds
the shortest path, then finds the next 4 shortest deviations. The pathways are ranked according to their score. See the
example below.

Example 2: Specified Target:

>>> pyemap.find_paths(my_emap,"FAD510(A)-2", target = "W324(A)", max_paths=10)
>>> my_emap.report()
Branch: W324(A)
1a: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W324(A)'] 24.15
1b: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'W377(A)', 'W324(A)'] 35.25
1c: ['FAD510(A)-2', 'W400(A)', 'W334(A)', 'W379(A)', 'W324(A)'] 36.37
1d: ['FAD510(A)-2', 'W400(A)', 'W377(A)', 'W492(A)', 'W324(A)'] 49.20
1e: ['FAD510(A)-2', 'W385(A)', 'Y53(A)', 'Y309(A)', 'W377(A)', 'W324(A)'] 50.67
...

>>> my_emap.paths_graph_to_Image().show()
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Source

pyemap.shortest_paths.
dijkstras_shortest_paths(G, ...)

Returns shortest path from source to each surface ex-
posed residue.

pyemap.shortest_paths.
yens_shortest_paths(G, ...)

Returns shortest paths from source to target.
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pyemap.shortest_paths.dijkstras_shortest_paths

pyemap.shortest_paths.dijkstras_shortest_paths(G, start, targets)
Returns shortest path from source to each surface exposed residue.

Performs Dijkstra’s algorithm from the source to each surface exposed residue, finding the shortest path. The
ShortestPath objects are organized into branches based on the first surface exposed residue reached during the
course of the pathway.

Parameters

• G (networkx.Graph) – Undirected, weighted residue graph

• start (str) – Source node

• targets (list of str) – List of surface exposed residues

Returns
branches – A list of Branch objects representing the groups of pathways found

Return type
list of Branch

Raises
RuntimeError: – No shortest paths to surface found

pyemap.shortest_paths.yens_shortest_paths

pyemap.shortest_paths.yens_shortest_paths(G, start, target, max_paths=10)
Returns shortest paths from source to target.

Uses Yen’s algorithm to calculate the shortest paths from source to target, writes out the ShortestPath objects
to file, and returns the 10 pathway IDs. In the graph, nodes and edges that are part of any pathways are made
opaque, and the shortest path is highlighted.

Parameters

• G (networkx.Graph object) – Undirected, weighted residue graph

• start (str) – Source node

• target (str) – Target node

• max_paths (int, optional) – Maximum number of paths to search for

Returns
A list of length 1 containing a single Branch object which represents the group of pathways found.

Return type
list of Branch objects
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References

Jin Y. Yen, Finding the K Shortest Loopless Paths in a Network, Management Science, Vol. 17, No. 11, Theory
Series (Jul., 1971), pp. 712-716.

Raises
PyeMapShortestPathException: – No shortest paths to target found.

2.4.2 Protein Graph Mining

Usage

Graph mining with PyeMap occurs in 4 steps:

1. Generate protein graphs

2. Classify nodes and edges

3. Find subgraph patterns

4. Find and cluster protein subgraphs

Step 1: Generate Protein Graphs

The first step is to fetch and/or parse a list of PDBs using fetch_and_parse() or parse(), and add them to the
PDBGroup object. Once all of the eMap objects have been collected, the second step is to call process_emaps(),
which uses the same infrastructure as Single Protein Analysis to generate the protein graphs.

pg = pyemap.graph_mining.PDBGroup("My Group")
#pdb_ids = ['1u3d','1iqr'...]
for pdb in pdb_ids:

pg.add_emap(pyemap.fetch_and_parse(pdb))

Step 2: Classify nodes and edges

The next step is to classify the nodes and edges using generate_graph_database(). In many cases, this function
can be called with no arguments, but in some cases it can be useful to allow for node substitutions, or to specify edge
thresholds. See the classification section for more details.

pg.generate_graph_database()

Step 3: Find Subgraph Patterns

The next step is to find subgraph patterns which are shared among the protein graphs. One can either mine for all
patterns up to a given support threshold:

pg.run_gspan(10)

Or search for a particular pattern or set of patterns:

pg.find_subgraph('WWW#')

See the mining section for more details.

Step 4: Find and cluster protein subgraphs

The results of the mining calculation are stored in the subgraph_patterns dictionary as SubgraphPattern objects.
To find protein subgraphs, the find_protein_subgraphs() function must be called for the subgraph pattern of
interest. The identified protein subgraphs are stored in the protein_subgraphs attribute of the SubgraphPattern
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object, and the clustering is described by the groups attribute. One can switch between different types of clustering
using the set_clustering() function.

sg = pg.subgraph_patterns['1_WWW#_18']
sg.find_protein_subgraphs()
sg.set_clustering("sequence")
# print results, including clustering
print(sg.full_report())

Data Structures

PDB Group

The PDBGroup object is the primary data structure for graph mining analysis in PyeMap. It stores the emap objects
which contain the graph theory models of the protein structures, the graph database defined by the classifications of
nodes and edges, and the results of the mining calculation.

class pyemap.graph_mining.PDBGroup(title)
Contains all information regarding the group of proteins being analyzed, and all of the the subgraph patterns
identified by the gSpan algorithm.

title

Title of PDB group

Type
str

emaps

Dict of PDBs being analyzed by PyeMap. The keys are PDB IDs, meaning that only one emap object per
PDB ID is allowed.

Type
dict of str: emap

subgraph_patterns

Dict of subgraph patterns found by GSpan. Keys are the unique IDs of the SubgraphPattern objects.

Type
dict of str: SubgraphPattern

fasta

List of unaligned sequences in FASTA format

Type
str

aligned_fasta

List of sequences in FASTA format after multiple sequence alignment

Type
str

__init__(title)
Initializes PDBGroup object

Parameters
title (str) – Title of PDB group
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add_emap(emap_obj)
Adds an emap object to the PDB group.

Parameters
emap_obj (emap object) – Parsed PDB generated by parse() or fetch_and_parse()

Examples

>>> my_pg.add_emap(pyemap.fetch_and_parse('1u3d'))

find_subgraph(graph_specification)
Mine for a specified subgraph pattern.

Linear chains can be specified simply by list the 1-letter amino acid codes/special characters, e.g. WWW.
To specify branching, use a syntax similar to the SMILES format, where there is no specification of bonding
and each character must be upper case and separated by brackets, e.g. [H]1[C][#][C]1. If edge thresholds
are used, all possible combinations of edges will be searched for.

Parameters
graph_specification (str) – String of graph to search for

Notes

Special characters: * - wildcard character # - non-protein residue X - unknown residue

Examples

>>> my_pg.find_subgraph('WWW#')

generate_graph_database(sub=[], edge_thresh=[])
Generates graph database for mining.

Parameters

• sub (list of str, optional) – List of 1-character amino acid codes to be labeled as
“X”. All other included standard amino acids receive their own category.

• edge_thresholds (list of float, optional) – List of edge thresholds. Edges with
weight below the first value will be given the label 2, edges between the 1st and second
values will be labeled as 3, and so on.

Examples

>>> pg.generate_graph_database(['W','Y'],[12,15])

mining_report(dest=None)
Generates general report of all subgraph patterns found in the analysis.

Parameters
dest (str, optional) – Destination to write report to file

Returns
report – General report of all subgraph patterns found in the analysis.
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Return type
str

process_emaps(chains={}, eta_moieties={}, include_residues=['Y', 'W'], **kwargs)
Processes emap objects in order to generate protein graphs.

Should be executed once all of the emap objects have been added to the group.

Parameters

• chains (dict of str: list of str, optional) – Chains to include for each PDB.
The special keyword ‘All’ is also accepted.

• eta_moieties (dict of str: list of str, optional) – Dict containing list of
ETA moieties(specified by their residue label) to include for each PDB. By default, all on
the included chains will be included.

• include_residues (list of str, optional) – List of 1-letter standard AA codes to
include in the graph

• **kwargs – For a list of accepted kwargs, see the documentation for process().

Examples

>>> eta_moieties = {'1u3d': ['FAD510(A)-2'], '1u3c': ['FAD510(A)-2'], '6PU0': [
→˓'FAD501(A)-2'], '4I6G': ['FAD900(A)-2'], '2J4D': ['FAD1498(A)-2']}
>>> chains = {'1u3d': ['A'], '1u3c': ['A'], '6PU0': ['A'], '4I6G': ['A'], '2J4D
→˓': ['A']}
>>> my_pg.process_emaps(chains=chains,eta_moieties=eta_moieties)

run_gspan(min_support, min_num_vertices=4, max_num_vertices=inf, **kwargs)
Mines for common subgraphs using gSpan algorithm. Results are stored as SubgraphPattern objects in
the subgraph_patterns dictionary.

References

Yan, Xifeng, and Jiawei Han. “gspan: Graph-based substructure pattern mining.” 2002 IEEE International
Conference on Data Mining, 2002. Proceedings.. IEEE, 2002.

Parameters

• min_support (int) – Minimum support number of subgraphs in the search space

• min_num_vertices (int, optional) – Minimum number of nodes for subgraphs in the
search space

• max_num_vertices (int, optional) – Maximum number of nodes for subgraphs in
the search space

• **kwargs – See https://github.com/betterenvi/gSpan for a list of accepted kwargs.
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Examples

>>> my_pg.run_gspan(10)

save_fasta(dest='')
Saves fasta from multiple sequence alignment to file

Parameters
dest (str, optional) – Destination to write aligned fasta to file

Frequent Subgraph

The pyemap.graph_mining.SubgraphPattern object stores all of the data related to a subgraph pattern identified
by the mining algorithm. This class is responsible for finding protein subgraphs in each PDB, and clustering them
based on similarity.

class pyemap.graph_mining.SubgraphPattern(G, graph_number, support, res_to_num_label,
edge_thresholds)

Stores all information regarding an identified subgraph pattern.

id

Unique identifier for subgraph pattern.

Type
str

G

Graph representation of this subgraph pattern.

Type
networkx.Graph

support

List of PDB IDs which contain this subgraph

Type
list of str

protein_subgraphs

Dict which contains protein subgraphs which match this pattern. Each entry has a unique identifier and
a networkx.Graph derived from the graphs generated by the emap class which match the pattern of this
pattern.

Type
dict of str: networkx.Graph

groups

Protein subgraph (IDs) clustered into groups based on similarity

Type
dict of str: list of str

support_number

Number of PDBs this subgraph pattern was identified in

Type
int
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__init__(G, graph_number, support, res_to_num_label, edge_thresholds)
Initializes SubgraphPattern object.

Parameters

• G (networkx.Graph) – Graph representation of this subgraph pattern

• graph_number (int) – Unique numerical ID for this subgraph pattern

• support (list of str) – List of PDB IDs which contain this subgraph

• res_to_num_label (dict of str: int) – Mapping of residue types to numerical
node labels

• edge_thresholds (list of float) – Edge thresholds which define edge labels

find_protein_subgraphs(clustering_option='structural')
Finds protein subgraphs which match this pattern.

This function must be executed to analyze protein subgraphs.

Parameters
clustering_option (str, optional) – Either ‘structural’ or ‘sequence’

Notes

Graphs are clustered by both sequence and structrual similarity, and the results are stored in
self._structural_groups and self._sequence_groups. The clustering_option argument used here deter-
mines which one of these groupings is used for self.groups. This can be changed at any time by calling
set_clustering() and specifying the other clustering option.

full_report()

Returns a full report of all protein subgraphs which match this pattern.

Returns
full_str – Report of protein subgraphs which match this pattern

Return type
str

general_report()

Generates general report which describes this subgraph pattern.

Returns
full_str – General report which describes this subgraph pattern

Return type
str

set_clustering(clustering_option)
Sets clustering option.

Parameters
clustering_option (str) – Either ‘structural’ or ‘sequence’.
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Notes

Since both types of clustering are always computed by pyemap.graph_mining.SubgraphPattern.
find_protein_subgraphs() all this function actually does is swap some private variables. The purpose
of this function is to determine what kind of clustering gets shown in the report.

subgraph_to_Image(id=None)
Returns PIL image of subgraph pattern or protein subgraph

Parameters
id (str, optional) – Protein subgraph ID. If not specified, generic subgraph pattern will
be drawn

Returns
img

Return type
PIL.Image.Image

subgraph_to_file(id=None, dest='')
Saves image of subgraph pattern or protein subgraph to file

Parameters

• id (str, optional) – Protein subgraph ID. If not specified, generic subgraph pattern
will be drawn

• str (dest;) – Destination to save the graph

• optional – Destination to save the graph

visualize_subgraph_in_nglview(id, view)
Visualize pathway in nglview widget

Parameters

• id (str) – Subgraph id to be visualized

• view (nglview.widget.NGLWidget) – NGL Viewer widget

Algorithms

Classification

Introduction

The efficiency and descriptive power of graph mining is enhanced when the algorithms are able to distinguish between
different types of nodes and edges. Graph mining in PyeMap relies on each node and edge in the graph database being
assigned a numerical label which corresponds to its category. PyeMap offers some customization of these labels in
order to broaden or narrow the search space.
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Nodes

By default, each standard amino acid residue receives its own category, and all non-standard residues included in the
analysis are labeled as ‘NP’ for non-protein (processed internally as ‘#’). One can specify a group of standard amino-
acid residue types to be given the label ‘X’ (which is standard notation for unknown residue type), which enables
these residues to be substituted for another in subgraph patterns. This is done by passing a list of 1-letter amino acid
characters as the sub keyword argument to generate_graph_database().

Example

Set isoleucine and leucine to be given the label ‘X’ in subgraph patterns.

pg.generate_graph_database(sub=['I','L'])

Edges

By default, all edges are assigned the same numerical label of 1. One can classify edges based on their weights by pass-
ing the edge_thresholds argument to generate_graph_database(). edge_thresholds should be formatted as
a list of floats in ascending order, where each value indicates a cutoff threshold for an edge category.

Example

pg.generate_graph_database(edge_thresholds=[8,12])
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Mining

Introduction

The goal of subgraph mining is to identify graph structures which occur a significant number of times across a set of
graphs. In the context of PyeMap, this means searching for shared pathways/motifs amongst a set of protein crystal
structures. In PyeMap, users can either search for all patterns which appear in a specified number of PDBs (General
Pattern Mining), or search for a specified group of patterns which match a string representation of the graph of interest
(Specific Pattern Mining).

General Pattern Mining

In the graph mining literature, the frequency that a pattern appears in the set of input graphs is referred to as the
support for that pattern. In other words, if a pattern appears in 12/14 graphs, one would say it supports 12 graphs, or
equivalently, has a support of 12 (regardless of whether it appears multiple times within a given graph).

In PyeMap, we use a Python implementation of the gSpan algorithm [Han2002], one of the most efficient and popular
approaches for graph mining. The technical details are beyond the scope of this documentation (and can be found in
the gSpan paper), but here we emphasize a few of its key features.

• gSpan is a recursive algorithm which relies on the use of minimum depth first search (DFS) codes

• gSpan is a complete algorithm, so it will find all patterns which meet a specified support threshold

• The perfomance of gSpan is greatly sped up by increasing the minimum support threshold, as this allows more
aggressive pruning of candidate subgraphs

In addition to the support number, one can also specify a minimum or maximum number of vertices for the identified
subgraph patterns. For a full list of accepted kwargs, please refer to the gspan_mining package’s repository.

To perform general pattern mining with PyeMap, use the run_gspan() function.

Example

Search for all subgraph patterns comprised of 4-6 nodes with a support number of 10 or greater using PyeMap.

pg.run_gspan(10,min_num_vertices=4,max_num_vertices=6)

Specific Pattern Mining

Instead of searching for all subgraphs up to a given support threshold, one instead may be interested in finding protein
subgraphs which match a previously known pattern. In this case, the problem is reduced to one of graph matching, and
we simply search each PDB for a monomorphism using the NetworkX implementation of the VF2 algorithm (see the
NetworkX documentation for more details).

In PyeMap, this is done for protein graphs using the find_subgraph() function. find_subgraph() accepts a string
representation of a subgraph, where each character is one of the following:

• 1-character amino acid code for a standard residue

• X’ for unknown amino acid types

• # for non-protein residue

• * as a wildcard character
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Branching can be specified using a syntax similar to the SMILES format, where there is no specification of bonding
and each amino acid or special character described above must be separated by brackets (see example below). See the
write_graph_smiles() function, and the pysmiles repository for more details.

If edge thresholds are used (see the classification section), the search will be performed for all possible combinations
of edges, and thus several subgraph patterns will be found for a set of residue types. If the * wildcard character is used,
subgraph pattern(s) will be found for each combination of each residue type replacing the * placeholder character(s),
including the special X and # residue types.

Examples

Fig. 2.1: Examples of subgraph patterns identified using string ‘WWW*’.

Subgraph Patterns

The end result of either mining option is a set of subgraph patterns, each of which has a unique ID with the format:

{Index}_{String representation}_{support number}

e.g. 1_WWW_18.

The string representation for each pattern is a pseudo-SMILES string generated using the pysmiles package. Impor-
tantly, these strings can be used as inputs for find_subgraph(), as they correctly encode the structure of the graph
using a syntax similar to the SMILES format.
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Fig. 2.2: Subgraph pattern (left) and protein subgraph (right) identified using the string ‘[H]1[C][#][C]1’.

Source

pyemap.graph_mining.write_graph_smiles(...) Returns pseudo-SMILES string for supplied graph.

pyemap.graph_mining.write_graph_smiles

pyemap.graph_mining.write_graph_smiles(generic_subgraph)
Returns pseudo-SMILES string for supplied graph.

Parameters
generic_subgraph (networkx.Graph) – Graph to be transformed into string representation.
The label attribute of each node should be set to the 1-letter amino acid code or special character.

Returns
pseudosmiles – String representation of graph of interest

Return type
str

Matching and Clustering

Introduction

The graph mining algorithms in the previous section tell us which PDBs a subgraph pattern is present in, but they do
not tell us which specific residues are involved. Additionally, two subgraphs belonging to the same pattern can have
different orientations or correspond to different residues in the crystal structure, and thus may not be related to one
another in a meaningful way. In PyeMap, we cluster subgraphs based on their simiarlity in order to identify shared
pathways/motifs.
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Graph Matching

In order to identify the specific residues involved in subgraph patterns, we utitlize the NetworkX implementation of
the VF2 algorithm for graph matching. We refer the reader to their documentation for more details, but for the sake of
clarity, we re-iterate some key defintions.

Let G=(N,E) be a graph with a set of nodes N and set of edges E.

If G’=(N’,E’) is a subgraph of G, then:
N’ is a subset of N,

E’ is a subset of E

If G’=(N’,E’) is isomorphic to G, then:
there exists a one-to-one mapping between N and N’,

there exists a one-to-one mapping between E and E’

If G’=(N’,E’) is a monomorphism of G, then:
N’ is a subset of N,

E’ is a subset of the set of edges in E relating nodes in N’

In PyeMap, for each PDB which supports the given subgraph pattern, we search for all subgraph monomorphisms of
the protein graph which are isomorphic to the subgraph pattern. This gives us a set of protein subgraphs, which we
can then cluster into groups based on similarity.

Each protein subgraph for a given subgraph pattern is assigned a unique ID with the format:

{PDB ID}-{Unique Index}

e.g. 1u3d-2.

Clustering

PyeMap currenly enables two types of clustering: structural similarity, and sequence simiarlity, which both use the
same underlying algorithm below.

Algorithm

For a given subgraph pattern P, we have a set of protein subgraphs V which correspond to groups of specific residues
in PDB structures which match pattern P. We then construct a supergraph G(V,E), where two protein subgraphs share
an edge if and only if they are deemed sufficiently similar by the chosen metric. The resulting supergraph G will be
composed of one or multiple connected components, and each connected component corresponds to a cluster of similar
protein subgraphs.

Structural Similarity

The structural similarity between two protein subgraphs in PyeMap is computed by superimposing the two sets of atoms
and computing the root mean squared distance (RMSD) using the Bio.PDB.Superimposer module in BioPython.
However, atoms can sometimes be missing from crystal structures, and we would also like some flexibility to allow for
substitutions. Starting from a one-to-one mapping between the residues, we make the following approximations to the
true RMSD:

• Only the alpha carbon (CA) is considered for standard amino acid residues. If it is not present in the crystal
structure, ∞ is returned.

• For non-standard amino acids, we use the first atom type both residues have in common. If no shared atom type
is found, ∞ is returned.
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Fig. 2.3: Example supergraph G, where each node is a protein subgraph belonging to a subgraph pattern P. In this
example, the supergraph G is composed of 66 connected components, and therefore, 66 clusters.
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Fig. 2.4: The largest cluster in Fig. 3 zoomed in.
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An edge is drawn between two protein subgraphs in the supergraph if RMSD ≤ 0.5 Å.

Sequence Similarity

Sequence simiarlity in PyeMap relies on a multiple sequence alignment, which will automatically be performed by the
MUSCLE package [Edgar2004] if it is installed on your machine. Starting from a one-to-one mapping between the
residues, the sequence similarity between two protein subgraphs is simply defined as the sum of the differences in the
residue numbers with respect to the multiple sequence alignment. For instance, TRP50 in one PDB and TRP200 in
another PDB could have a difference of 0 if they are aligned by the multiple sequence alignment. One important caveat
is that non-protein residues are not considered in sequence similarity, only standard amino acid residues.

An edge is drawn between two protein subgraphs in the supergraph if 𝐷 ≤ 𝑁 , where D is the sum of the differences in
the residue numbers with respect to the multiple sequence alignment, and 𝑁 is the total number of nodes comprising
the subgraph pattern, which allows for slight misalignments.

Note:

If MUSCLE is not installed, the original residue numbers will be used, which is unlikely to lead to a meaningful
clustering.

Source

pyemap.graph_mining.SubgraphPattern.
_do_clustering(...)

Compute the supergraphs and find the connected com-
ponents

pyemap.graph_mining.SubgraphPattern.
_subgraph_rmsd(...)

Computes RMSD between two protein subgraphs

pyemap.graph_mining.SubgraphPattern.
_subgraph_seq_dist(...)

Computes sequence distance between two protein sub-
graphs

pyemap.graph_mining.SubgraphPattern._do_clustering

SubgraphPattern._do_clustering(all_graphs)
Compute the supergraphs and find the connected components

pyemap.graph_mining.SubgraphPattern._subgraph_rmsd

SubgraphPattern._subgraph_rmsd(sg1, sg2, mapping)
Computes RMSD between two protein subgraphs

pyemap.graph_mining.SubgraphPattern._subgraph_seq_dist

SubgraphPattern._subgraph_seq_dist(sg1, sg2, mapping)
Computes sequence distance between two protein subgraphs
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Multiple Sequence Alignment MUSCLE: Edgar RC. Nucleic Acids Res. 2004 32(5) 1792-1797.

Graph Mining gSpan: X. Yan and J. Han. Proc. Int’l Conf. Data Mining, 2002.

Biopython: Application note: Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg,
I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M. J. L. Bioinformatics, 2009, 25, 1422-1423. PDB Parser:
Hamelryck, T.; Manderick, B. Bioinformatics, 2003, 19, 2308-2310.
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NetworkX. Pasadena, CA USA, 2008.
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Symbols
__init__() (pyemap.emap method), 23
__init__() (pyemap.graph_mining.PDBGroup

method), 41
__init__() (pyemap.graph_mining.SubgraphPattern

method), 44
__str__() (pyemap.Branch method), 25
_do_clustering() (pyemap.graph_mining.SubgraphPattern

method), 54
_subgraph_rmsd() (pyemap.graph_mining.SubgraphPattern

method), 54
_subgraph_seq_dist()

(pyemap.graph_mining.SubgraphPattern
method), 54

A
add_emap() (pyemap.graph_mining.PDBGroup

method), 41
add_path() (pyemap.Branch method), 25
aligned_fasta (pyemap.graph_mining.PDBGroup at-

tribute), 41

B
Branch (class in pyemap), 24
branch_id (pyemap.Branch attribute), 25
branches (pyemap.emap attribute), 22

C
calculate_residue_depth() (in module

pyemap.process_data), 34
calculate_rsa() (in module pyemap.process_data), 35
chain_list (pyemap.emap attribute), 22
cleanup_bonding() (in module pyemap.structures), 29
color_list (pyemap.ShortestPath attribute), 26
create_graph() (in module pyemap.process_data), 32

D
dijkstras_shortest_paths() (in module

pyemap.shortest_paths), 39

E
edges (pyemap.ShortestPath attribute), 25

emap (class in pyemap), 22
emaps (pyemap.graph_mining.PDBGroup attribute), 41
eta_moieties (pyemap.emap attribute), 22

F
fasta (pyemap.graph_mining.PDBGroup attribute), 41
fetch_and_parse() (in module pyemap), 16
file_path (pyemap.emap attribute), 22
filter_by_degree() (in module

pyemap.process_data), 32
filter_by_percent() (in module

pyemap.process_data), 32
find_conjugated_systems() (in module

pyemap.custom_residues), 28
find_paths() (in module pyemap.pathway_analysis),

21
find_protein_subgraphs()

(pyemap.graph_mining.SubgraphPattern
method), 45

find_subgraph() (pyemap.graph_mining.PDBGroup
method), 42

full_report() (pyemap.graph_mining.SubgraphPattern
method), 45

G
G (pyemap.graph_mining.SubgraphPattern attribute), 44
general_report() (pyemap.graph_mining.SubgraphPattern

method), 45
generate_graph_database()

(pyemap.graph_mining.PDBGroup method),
42

get_surface_exposed_residues() (pyemap.emap
method), 23

groups (pyemap.graph_mining.SubgraphPattern at-
tribute), 44

I
id (pyemap.graph_mining.SubgraphPattern attribute), 44
init_graph (pyemap.emap attribute), 22
init_graph_to_file() (pyemap.emap method), 23
init_graph_to_Image() (pyemap.emap method), 23

63



PyeMap Documentation

L
label_texts (pyemap.ShortestPath attribute), 26
labeled_atoms (pyemap.ShortestPath attribute), 26
length (pyemap.ShortestPath attribute), 26

M
mining_report() (pyemap.graph_mining.PDBGroup

method), 42
module

pyemap.pathway_analysis, 21

P
parse() (in module pyemap), 16
path (pyemap.ShortestPath attribute), 25
path_id (pyemap.ShortestPath attribute), 26
paths (pyemap.Branch attribute), 25
paths (pyemap.emap attribute), 22
paths_graph (pyemap.emap attribute), 23
paths_graph_to_file() (pyemap.emap method), 23
paths_graph_to_Image() (pyemap.emap method), 23
pathways_model() (in module pyemap.process_data),

33
PDBGroup (class in pyemap.graph_mining), 41
process() (in module pyemap), 17
process_custom_residues() (in module

pyemap.custom_residues), 28
process_emaps() (pyemap.graph_mining.PDBGroup

method), 43
protein_subgraphs (pyemap.graph_mining.SubgraphPattern

attribute), 44
pyemap.pathway_analysis

module, 21

R
remove_side_chains() (in module pyemap.structures),

29
report() (pyemap.emap method), 24
residue_to_file() (pyemap.emap method), 24
residue_to_Image() (pyemap.emap method), 24
residues (pyemap.emap attribute), 22
run_gspan() (pyemap.graph_mining.PDBGroup

method), 43

S
save_fasta() (pyemap.graph_mining.PDBGroup

method), 44
selection_strs (pyemap.ShortestPath attribute), 26
sequences (pyemap.emap attribute), 22
set_clustering() (pyemap.graph_mining.SubgraphPattern

method), 45
set_id() (pyemap.ShortestPath method), 26
set_visualization() (pyemap.ShortestPath method),

26

ShortestPath (class in pyemap), 25
subgraph_patterns (pyemap.graph_mining.PDBGroup

attribute), 41
subgraph_to_file() (pyemap.graph_mining.SubgraphPattern

method), 46
subgraph_to_Image()

(pyemap.graph_mining.SubgraphPattern
method), 46

SubgraphPattern (class in pyemap.graph_mining), 44
support (pyemap.graph_mining.SubgraphPattern

attribute), 44
support_number (pyemap.graph_mining.SubgraphPattern

attribute), 44

T
target (pyemap.Branch attribute), 25
title (pyemap.graph_mining.PDBGroup attribute), 41

U
user_residues (pyemap.emap attribute), 22

V
visualize_pathway_in_nglview() (pyemap.emap

method), 24
visualize_subgraph_in_nglview()

(pyemap.graph_mining.SubgraphPattern
method), 46

W
write_graph_smiles() (in module

pyemap.graph_mining), 50

Y
yens_shortest_paths() (in module

pyemap.shortest_paths), 39
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